Realizing the smart grid: Aligning consumer behaviour with technological opportunities

The energy behaviour of consumers is a major source of uncertainty in the development of smart energy systems (SES).

The envisioned benefits of SES will only be realized if consumers
(1) adopt smart energy technologies (SET), and
(2) use these technologies in a way that secures energy system reliability, efficiency, and sustainability.

Reliable scenarios for consumer adoption and use of SES at the neighbourhood level are essential to secure stability of the grid.

Research question:
Which individual factors predict, explain, and influence consumer adoption and use of smart energy technologies that will result in a reduction of uncertainty in smart energy systems?

Who adopts smart energy technologies and why?

Adoption SET ≠ smart use

Early simulation results reveal that grid problems may already arise in Amsterdam in 2015, even if EV diffusion reaches only 50% of policy target.

Smart use = reduction of peak demand

An example of smart use of SETs is reducing peak demand by smart charging of EVs. EVs can also be used as storage for solar photovoltaic electricity.

Environmental self-identity

Strong environmental self-identity, the extent to which you see yourself as a pro-environmental person (Van der Werff, Steg & Keizer, 2013), may promote durable and wide scale changes in smart energy behaviour.

How can the environmental self-identity be strengthened as to promote smart energy behaviours?

Method

- Multi-method approach: questionnaires, experiments, simulation modelling;
- Results of questionnaires and experiments serve as input for simulation studies;
- Results simulation studies serve as input for questionnaires and experiments.

Current models

<table>
<thead>
<tr>
<th>Our model includes...</th>
</tr>
</thead>
<tbody>
<tr>
<td>…Macro &amp; top-down</td>
</tr>
<tr>
<td>…Focus on technology &amp; ICT</td>
</tr>
</tbody>
</table>

Expected results

Scenarios for SES that reveal where and when changes in energy infrastructure, investments and incentives are needed. Scenarios include:
- Accurate model of consumer behaviour;
- Capacity of the energy system;
- …and are location-specific.

Planning

Research team

University of Groningen
Annemijn Peters
Prof. dr. Linda Steg
Dr. Ellen van der Werff

Utrecht University
Mart van der Kam
Prof. dr. Floortje Alkemade
Prof. dr. Marko Hekkert
Dr. Wilfried van Sark

Project partners

Contact:
M.J.vanderKam@uu.nl
A.M.Peters@rug.nl

Dr. Wilfried van der Kam
Prof. dr. Marko Hekkert
Prof. dr. Linda Steg
Dr. Ellen van der Werff

Research team

PhD1 (RUG)
WP1a: Simulating adoption and use
WP1b: Stakeholder consultation and Scenario evaluation with stakeholders

PhD2 (UU)
WP1a: Individual factors influencing adoption and use
WP2a: Effects interventions on adoption

WP2b: Simulating adoption and use
WP3a: Simulating scenarios with interpretation

Expected results

Planning

Year 1
Understanding

Year 2

Year 3

Aligning

Year 4

References

Eising, van der Kam & Alkemade (2014)
Dr. Ellen van der Werff, Prof. dr. Linda Steg, Dr. Ellen van der Werff
A.M.Peters@rug.nl
M.J.vanderKam@uu.nl